# Automating Detection and Diagnosis of Faults, Failures, and Underperformance in PV Plants

**Applications of AI/ML** 

Scott Sheppard, Turbine Logic Lead Engineer – Renewables Monitoring

Daniel Fregosi, Wayne Li, EPRI Kamran Paynabar, Georgia Tech

Solar Applications of Artificial Intelligence and Machine Learning Oct 31, 2023









# The Problem...Using Available Data to Full Potential



- Large plant may have "10s" of inverters
- Limited sensor data available to detect DC side faults



- Each Inverter contains 10s to 100s of Combiner Boxes
- Each CB may have current and voltage measurements
- Can be used for diagnostics not typically used today



Can we couple physics-based modeling and Al to better detect and localize string level faults?

# **Motivation**

- Goal: Provide a better diagnostic solutions with fewer false alarms and actionable M&D insight
- Subtle failures across the DC collector field often go undetected for large amounts of time
  - Determining the source of the failure is time consuming
  - Aerial inspections
    - Performed to detect small-scale faults across the DC collector field
    - Are typically performed infrequently
    - Current gold standard
- MODEL-DRIVEN APPROACH USES BIG DATA AVAILABLE AT PV SITES ENABLES REAL-TIME DETECTION
  - Improves ability to detect faults while reducing presence of false alarms
  - Improves ability to locate faults to more specific hardware components
  - Provides further aid in diagnosing cause of underperformance

M&D centers have abundant data available, how can it better be used for detection of subtle faults?

**Modeling Approach – Fault Detection** 

Physics-based models coupled with AI to identify failed string and tracker outages

- ML/Al used to determine repeated hardware configurations through plant
  - Enables automatic setup of plant layout, reducing time spent by 90%
- Fault detection driven by feature extraction of measured and modeled signals





| ciustering captures repeated |  |
|------------------------------|--|
| site architectures           |  |

| Sensitivity | TPR | FPR | F1   |
|-------------|-----|-----|------|
| High        | 65% | 19% | 0.57 |
| Med         | 49% | 10% | 0.54 |
| Low         | 36% | 7%  | 0.46 |

Tunable detection algorithm allows user to tailor results to personal needs.



# **Modeling Approach – Fault Diagnosis**

Decomposition-based approach integrates optimization and dictionary learning to decompose signals

Functional PCA, Xgboost, and Random Forest were used to diagnose the fault type.



# OTHER APPLICATIONS OF ML/AI IN POWER GENERATION



# RESEARCH VS INDUSTRIAL APPLICATIONS



SETO funding and industry partners have allowed us to focus on solutions that work for industry.



# Which Tool?

What are the problem features?

Time dependent?
Must run in real-time?
Must update automatically?

# Performance Benchmarking

- Recurrent Neural Networks
- Autoencoders
- Bayesian Regression
- Probabilistic Forecasting

# **Anomaly Detection**

- Dynamic Linear Models
- Auto-associative Neural Networks
- Bayesian Hypothesis Testing

# Fault Detection and Diagnosis

- Bayesian Networks
- Xgboost
- Random Forest

# **Forecasting**

- Artificial Neural Networks
- Uncertainty
   Quantification
- Uncertainty Propagation

# **ANOMALY DETECTION**

Significance of Step Change **Original model** Power vs. Inlet Temperature **New model Rolling Update** 115 **Model is constantly** evaluating new data, 155 checking for significant changes 05-01-2022 21-01-2022 03-01-2022 **Date** 

After an outage, the model quickly recognizes that new data belongs to a new trend and automatically retrains itself



#### **PROBLEM**

Identify faulted equipment



## **TECHNIQUE**

Dynamic Linear Model
Digital Twin



## **CHALLENGES**

Noisy data
Incomplete data
Every site has different data



#### **LESSONS**

Automatic trending
Automatic thresholding
Flag items to look at



# **OUTAGE PERFORMANCE BENCHMARKING**





Quantify outage impact Benchmark future outages



## **TECHNIQUE**

Recurrent Neural Network
Autoencoder
Digital Twin



## **CHALLENGES**

Ambient conditions are cyclic Some changes are expected



#### **LESSONS**

Flag items to look at Automatic training

# VIRTUAL EXPERT





Intelligent prompts for additional observations refines diagnoses



#### **PROBLEM**

Identify faulted hardware Knowledge retention



## **TECHNIQUE**

Bayesian Belief Network



#### **CHALLENGES**

Non-centralized failure logs
Sparse data



#### **LESSONS**

Observations can be overlooked SME's implicitly know relationships Engineers hate data entry



# PERFORMANCE FORECASTING (OPTORA)





#### **PROBLEM**

Accurately Forecasting Production
Optimizing Unit Dispatch



## **TECHNIQUE**

Artificial Neural Network
Digital Twin



## **CHALLENGES**

Inconstant weather forecasts
Varying operational costs
Varying unit performance



#### **LESSONS**

Need "Invisible" AI Need to correct input data

# **CLOSING THOUGHTS**

- Ignoring physics in AI/ML?
  - You're missing its true potential
- Complex models and architectures designs in solutions?
  - You're setting up for failure
- If your AI can't handle messy data, is it even AI?
- Static models are just trending
  - Without automated trend analysis and retraining there's no learning
- Without domain expertise, AI/ML is just a novice playing expert

